Domain cloud-data.de kaufen?

Produkte zum Begriff Science:


  • Scheid, Sandro: Data Science
    Scheid, Sandro: Data Science

    Data Science , Die Methoden der Datenanalyse gewinnen mit der exponentiell wachsenden Rechnerleistung und dem Aufschwung des Machine Learnings bzw. der Künstlichen Intelligenz immer mehr an Bedeutung. Das vorliegende Lehrbuch bietet einen anwendungsorientierten Einstieg in die für die modernen Verfahren der Datenanalyse ("Data Science") notwendigen Grundlagen. Das Buch behandelt im ersten Teil die deskriptive Statistik, mit der die Datenanalyse beginnen sollte. Im zweiten Teil wird die Wahrscheinlichkeitsrechnung behandelt, die als Grundlage für die weiteren Kapitel benötigt wird. Teil drei behandelt die klassischen Themen der induktiven Statistik. Danach werden im vierten Teil verschiedene weiterführende Methoden der Datenanalyse behandelt. Neben klassischen Methoden wie Faktoren- oder Clusteranalyse werden hier beispielsweise auch die Einsatzmöglichkeiten von Neuronalen Netzen gezeigt. Das Buch setzt keine besonderen mathematischen Kenntnisse voraus. Die Methoden sind in klarer, verständlicher Sprache beschrieben und durch zahlreiche praxisrelevante Beispiele illustriert. Praxisnahe Übungsaufgaben vertiefen das Verständnis. Herleitungen werden nur insoweit ausgeführt, wie sie zum Verständnis beitragen. Ziel des Buches ist es, eine verständliche, anschauliche Einführung in die oft als schwierig empfundene Statistik zu geben, ohne auf eine exakte Darstellung zu verzichten. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 29.99 € | Versand*: 0 €
  • Wickham, Hadley: R für Data Science
    Wickham, Hadley: R für Data Science

    R für Data Science , Mit R Daten analysieren - die anschauliche und verständliche Einführung 2. Auflage des US-Bestellers, jetzt vollständig aktualisiert und erweitert Hadley Wickham ist eine Legende auf dem Gebiet der Data Science: Er hat eine vollkommen neue, bahnbrechende Methode der Datenanalyse mit R entwickelt Wickhams innovative Herangehensweise wird in diesem Buch beschrieben, es ist ein Standardwerk für Datenanalysten Erfahren Sie, wie Sie mit R aus Ihren Daten Erkenntnisse und Einsichten gewinnen. Dieses Buch führt Sie in R und RStudio ein sowie in Tidyverse, eine Sammlung von R-Paketen, mit denen Data-Science-Aufgaben effektiv und zeitsparend erledigt werden können. Auch wenn Sie keine Programmiererfahrung haben, können Sie mit diesem aktualisierten Standardwerk schnell in die Praxis der Data Science einsteigen. Sie lernen, Daten zu importieren, aufzubereiten, zu visualisieren und die Ergebnisse zu präsentieren. Darüber hinaus bekommen Sie einen umfassenden Überblick über den Data-Science-Zyklus und die Tools, die für die Detailarbeit erforderlich sind. Die zweite Auflage behandelt die neuesten Funktionen und Best Practices von Tidyverse und zeigt Ihnen in neu hinzugekommenen Kapiteln, wie Sie Daten aus Spreadsheets, Datenbanken und Websites nutzen. Zahlreiche Übungen unterstützen Sie dabei, das Gelernte praktisch auszuprobieren. Themen des Buchs sind: Visualisieren - Erstellen Sie Diagramme für die Datenauswertung und die Kommunikation von Ergebnissen Transformieren - Erkunden Sie Variablentypen und die Werkzeuge, um mit ihnen zu arbeiten Importieren - Lesen Sie Daten in R ein und bringen Sie sie in eine für die Analyse geeignete Form Programmieren - Lernen Sie leistungsfähige R-Tools kennen, mit denen Sie Datenprobleme leichter lösen können Kommunizieren - Verwenden Sie Quarto, um Text, Code und Ergebnisse kombiniert darzustellen , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 54.90 € | Versand*: 0 €
  • Einführung in Data Science (Grus, Joel)
    Einführung in Data Science (Grus, Joel)

    Einführung in Data Science , Neuauflage des Standardwerks, jetzt zu Python 3.6 Der ideale Einstieg in Data Science - didaktisch klug angelegt und gut nachvollziehbar Bietet mathematisches Hintergrundwissen und einen Crashkurs für Python Enthält neues Material zu Deep Learning, Statistik und Natural Language Processing Dieses Buch führt Sie in Data Science ein, indem es grundlegende Prinzipien der Datenanalyse erläutert und Ihnen geeignete Techniken und Werkzeuge vorstellt. Sie lernen nicht nur, wie Sie Bibliotheken, Frameworks, Module und Toolkits konkret einsetzen, sondern implementieren sie auch selbst. Dadurch entwickeln Sie ein tieferes Verständnis für die Zusammenhänge und erfahren, wie essenzielle Tools und Algorithmen der Datenanalyse im Kern funktionieren. Falls Sie Programmierkenntnisse und eine gewisse Sympathie für Mathematik mitbringen, unterstützt Joel Grus Sie dabei, mit den mathematischen und statistischen Grundlagen der Data Science vertraut zu werden und sich Programmierfähigkeiten anzueignen, die Sie für die Praxis benötigen. Dabei verwendet er Python: Die weit verbreitete Sprache ist leicht zu erlernen und bringt zahlreiche Bibliotheken für Data Science mit. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 2. Auflage, Erscheinungsjahr: 201912, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: Grus, Joel, Übersetzung: Rother, Kristian~Demmig, Thomas, Auflage: 20002, Auflage/Ausgabe: 2. Auflage, Themenüberschrift: COMPUTERS / Programming Languages / Python, Keyword: Big Data; Statistik; Data Mining; Algorithmen; Wahrscheinlichkeit; Mathematik; MapReduce, Fachschema: Data Mining (EDV)~Analyse / Datenanalyse~Datenanalyse~Programmiersprachen, Fachkategorie: Data Mining, Warengruppe: HC/Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, Seitenanzahl: XVII, Seitenanzahl: 379, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 238, Breite: 164, Höhe: 27, Gewicht: 757, Produktform: Kartoniert, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger EAN: 9783960090212, andere Sprache: 9781492041139, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0030, Tendenz: 0, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 36.90 € | Versand*: 0 €
  • Python for Data Science (Vasiliev, Yuli)
    Python for Data Science (Vasiliev, Yuli)

    Python for Data Science , A hands-on, real-world introduction to data analysis with the Python programming language, loaded with wide-ranging examples. Python is an ideal choice for accessing, manipulating, and gaining insights from data of all kinds. Python for Data Science introduces you to the Pythonic world of data analysis with a learn-by-doing approach rooted in practical examples and hands-on activities. You’ll learn how to write Python code to obtain, transform, and analyze data, practicing state-of-the-art data processing techniques for use cases in business management, marketing, and decision support. You will discover Python’s rich set of built-in data structures for basic operations, as well as its robust ecosystem of open-source libraries for data science, including NumPy, pandas, scikit-learn, matplotlib, and more. Examples show how to load data in various formats, how to streamline, group, and aggregate data sets, and how to create charts, maps, and other visualizations. Later chapters go in-depth with demonstrations of real-world data applications, including using location data to power a taxi service, market basket analysis to identify items commonly purchased together, and machine learning to predict stock prices. , > , Erscheinungsjahr: 20220802, Produktform: Kartoniert, Autoren: Vasiliev, Yuli, Themenüberschrift: COMPUTERS / Programming Languages / Python, Keyword: nerd gifts;gift books;tech gifts;gifts for nerds;geek gifts;gifts for geeks;programmer gifts;data science;python for data science;machine learning;data analysis;learn python;python books;programming books;head first python;python programming for beginners;computer;technology;code;coding;coding for kids;algorithm;python;python programming;clean code;algorithms;python for data analysis;python machine learning;tech;learning python;python for beginners;coding for beginners;python data science, Fachschema: Data Mining (EDV)~Informatik~Programmiersprachen~Python (EDV), Fachkategorie: Data Mining~Informatik, Imprint-Titels: No Starch Press, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Text Sprache: eng, Verlag: Random House LLC US, Breite: 182, Höhe: 22, Gewicht: 438, Produktform: Kartoniert, Genre: Importe, Genre: Importe, Herkunftsland: VEREINIGTE STAATEN VON AMERIKA (US), Katalog: LIB_ENBOOK, Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0004, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 44.32 € | Versand*: 0 €
  • Hat Data Science Zukunft?

    Ja, Data Science hat definitiv Zukunft. Mit der zunehmenden Digitalisierung und dem wachsenden Bedarf an datenbasierten Entscheidungen in Unternehmen wird die Nachfrage nach Data Science-Fachleuten weiter steigen. Zudem ermöglicht Data Science die Entwicklung neuer Technologien und Lösungen in verschiedenen Bereichen wie Gesundheitswesen, Finanzen, Marketing und vielen anderen. Daher wird Data Science auch in Zukunft eine wichtige Rolle spielen.

  • Was bedeuten Data Science und Data Engineering?

    Data Science bezieht sich auf die Analyse und Interpretation von Daten, um Erkenntnisse und Muster zu gewinnen, die bei der Lösung von Problemen und der Unterstützung von Entscheidungsprozessen helfen. Data Engineering hingegen bezieht sich auf die Entwicklung und Verwaltung von Dateninfrastrukturen, um sicherzustellen, dass Daten effizient erfasst, gespeichert, verarbeitet und analysiert werden können. Data Engineering legt den Fokus auf die technische Seite der Datenverarbeitung, während Data Science sich auf die Analyse und Interpretation der Daten konzentriert.

  • Sollte ich Data Science studieren?

    Ob du Data Science studieren solltest, hängt von deinen Interessen und Zielen ab. Wenn du ein starkes Interesse an Mathematik, Statistik und Programmierung hast und gerne komplexe Daten analysierst, könnte ein Studium in Data Science für dich geeignet sein. Es ist auch wichtig zu beachten, dass Data Science ein schnell wachsendes Feld ist und gute Karrieremöglichkeiten bietet.

  • Sollte man Wirtschaftsinformatik oder Data Science studieren?

    Die Wahl zwischen Wirtschaftsinformatik und Data Science hängt von den persönlichen Interessen und Karrierezielen ab. Wirtschaftsinformatik kombiniert betriebswirtschaftliches Wissen mit IT-Kenntnissen und ist daher für diejenigen geeignet, die eine Karriere in der Schnittstelle von Wirtschaft und IT anstreben. Data Science hingegen konzentriert sich auf die Analyse großer Datenmengen und die Entwicklung von datengetriebenen Lösungen, was für diejenigen interessant ist, die sich für die Arbeit mit Daten und statistischen Modellen begeistern.

Ähnliche Suchbegriffe für Science:


  • Vanderplas, Jake: Handbuch Data Science mit Python
    Vanderplas, Jake: Handbuch Data Science mit Python

    Handbuch Data Science mit Python , Der unverzichtbare Werkzeugkasten für Data Science in der 2. Auflage Das bewährte Standardwerk jetzt in vollständig aktualisierter Neuauflage Behandelt die neuesten Versionen von IPython, NumPy, pandas, Matplotlib und Scikit-Learn Die leicht nachvollziehbaren Beispiele helfen Ihnen bei der erfolgreichen Einrichtung und Nutzung der Data-Science-Tools Inklusive Jupyter Notebooks, die es Ihnen ermöglichen, den Code direkt beim Lesen auszuprobieren Für viele Data Scientists ist Python die Sprache der Wahl, weil zahlreiche ausgereifte Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar sind. Jake VanderPlas versammelt in dieser 2. Auflage seines Standardwerks alle wichtigen Datenanalyse Tools in einem Band und erläutert deren Einsatz in der Praxis. Beschrieben werden IPython, Jupyter, NumPy, Pandas, Matplotlib, Scikit-Learn und verwandte Werkzeuge. Für Datenanalystinnen und analysten und Data Cruncher mit Python Kenntnissen ist dieses umfassende Handbuch von unschätzbarem Wert bei der Erledigung ihrer täglichen Aufgaben. Dazu gehören die Manipulation, Umwandlung und Bereinigung von Daten, die Visualisierung verschiedener Datentypen sowie die Nutzung von Daten zum Erstellen von Statistiken und Machine Learning Modellen. Dieses Handbuch beschreibt die folgenden Tools: IPython und Jupyter bieten eine Umgebung für Berechnungen, die von vielen Data Scientists genutzt wird NumPy stellt das ndarray zum effizienten Speichern und Bearbeiten dicht gepackter Datenarrays bereit Pandas verfügt über das DataFrameObjekt für die Speicherung und Manipulation gelabelter und spaltenorientierter Daten Matplotlib ermöglicht die flexible und vielseitige Visualisierung von Daten Scikit-Learn unterstützt bei der Implementierung der wichtigsten und gebräuchlichsten Algorithmen für das Machine Learning »Jake beschreibt weit mehr als die Grundlagen dieser Open-Source-Tools; er erläutert die zugrunde liegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« -- Brian Granger, Physikprofessor und Mitbegründer des Jupyter-Projekts , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Thema: Verstehen, Länge: 240, Breite: 165, andere Sprache: 9781098121228, Relevanz: 0018, Tendenz: +1,

    Preis: 49.90 € | Versand*: 0 €
  • R for Data Science (Wickham, Hadley~Çetinkaya-Rundel, Mine~Grolemund, Garrett)
    R for Data Science (Wickham, Hadley~Çetinkaya-Rundel, Mine~Grolemund, Garrett)

    R for Data Science , "Use R to turn data into insight, knowledge, and understanding. With this practical book, aspiring data scientists will learn how to do data science with R and RStudio, along with the tidyverse--a collection of R packages designed to work together to make data science fast, fluent, and fun. Even if you have no programming experience, this updated edition will have you doing data science quickly. You'll learn how to import, transform, and visualize your data and communicate the results. And you'll get a complete, big-picture understanding of the data science cycle and the basic tools you need to manage the details. Updated for the latest tidyverse features and best practices, new chapters show you how to get data from spreadsheets, databases, and websites. Exercises help you practice what you've learned along the way"-- , > , Auflage: 2nd Edition, Erscheinungsjahr: 202307, Produktform: Kartoniert, Autoren: Wickham, Hadley~Çetinkaya-Rundel, Mine~Grolemund, Garrett, Auflage: 23002, Auflage/Ausgabe: 2nd Edition, Themenüberschrift: COMPUTERS / Data Modeling & Design~COMPUTERS / Mathematical & Statistical Software~MATHEMATICS / Probability & Statistics / General, Fachschema: Analyse / Datenanalyse~Datenanalyse~Mathematik / Informatik, Computer~Datenverarbeitung / Anwendungen / Mathematik, Statistik~Database~Datenbank~Datenverarbeitung / Simulation~Architektur (EDV)~Rechnerarchitektur, Fachkategorie: Wahrscheinlichkeitsrechnung und Statistik~Mathematische und statistische Software~Datenbankdesign und -theorie~Datenerfassung und -analyse~Computermodellierung und -simulation, Fachkategorie: Informationsarchitektur, Text Sprache: eng, Verlag: O'Reilly Media, Länge: 233, Breite: 178, Höhe: 32, Gewicht: 1006, Produktform: Kartoniert, Genre: Importe, Genre: Importe, Vorgänger: 7638639, Vorgänger EAN: 9781491910399, Katalog: LIB_ENBOOK, Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0016, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 62.99 € | Versand*: 0 €
  • Data-Driven Science and Engineering (Brunton, Steven L.~Kutz, J. Nathan)
    Data-Driven Science and Engineering (Brunton, Steven L.~Kutz, J. Nathan)

    Data-Driven Science and Engineering , Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material - including lecture videos per section, homeworks, data, and code in MATLAB®, Python, Julia, and R - available on databookuw.com. , > , Auflage: 2nd Edition, Erscheinungsjahr: 20220505, Produktform: Leinen, Autoren: Brunton, Steven L.~Kutz, J. Nathan, Auflage: 22002, Auflage/Ausgabe: 2nd Edition, Abbildungen: Worked examples or Exercises, Themenüberschrift: COMPUTERS / General, Fachschema: Datenverarbeitung / Anwendungen / Technik~EDV / Theorie / Allgemeines~Elektronik - Elektroniker~Englische Bücher / Naturwissenschaften~Ingenieurwissenschaft - Ingenieurwissenschaftler~Intelligenz / Künstliche Intelligenz~KI~Künstliche Intelligenz - AI~Mathematik / Informatik, Computer~Modell~Optimierung~Physik / Mathematik~Regelungstechnik~Mathematik, Fachkategorie: Wahrscheinlichkeitsrechnung und Statistik~Optimierung~Mathematische Physik~Ingenieurswesen, Maschinenbau allgemein~Informationstechnik (IT), allgemeine Themen~Theoretische Informatik~Maschinelles Lernen~Digitale Signalverarbeitung (DSP), Warengruppe: HC/Mathematik/Wahrscheinlichkeitstheorie, Fachkategorie: Regelungstechnik, Text Sprache: eng, Seitenanzahl: XXIV, Seitenanzahl: 590, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Cambridge University Pr., Verlag: Cambridge University Pr., Länge: 259, Breite: 182, Höhe: 32, Gewicht: 1408, Produktform: Gebunden, Genre: Importe, Genre: Importe, Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0100, Tendenz: +1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,

    Preis: 59.81 € | Versand*: 0 €
  • Oxocard Science
    Oxocard Science

    Oxocard Science

    Preis: 69.00 € | Versand*: 4.95 €
  • Bin ich ohne Studium für Data Science geeignet?

    Es ist möglich, ohne ein formales Studium in Data Science geeignet zu sein. Es gibt viele Möglichkeiten, sich selbstständig in diesem Bereich weiterzubilden, wie zum Beispiel Online-Kurse, Bootcamps oder praktische Erfahrungen. Es ist jedoch wichtig zu beachten, dass ein formaler Abschluss in Data Science oft von Arbeitgebern bevorzugt wird und einige Unternehmen möglicherweise eine entsprechende Ausbildung oder Erfahrung verlangen.

  • Was sind die Zukunftschancen im Bereich Data Science?

    Die Zukunftschancen im Bereich Data Science sind sehr vielversprechend. Mit der zunehmenden Digitalisierung und dem wachsenden Datenbestand in Unternehmen wird die Nachfrage nach Data Scientists weiter steigen. Zudem bieten neue Technologien wie künstliche Intelligenz und maschinelles Lernen immer mehr Möglichkeiten für datengetriebene Entscheidungen und Innovationen. Data Science wird daher eine wichtige Rolle in vielen Branchen spielen und gute Karrieremöglichkeiten bieten.

  • Was ist der Unterschied zwischen dem Bachelor of Science (B.Sc.) in Data Science und dem Bachelor of Science (B.Sc.) in Business Analytics?

    Der Bachelor of Science (B.Sc.) in Data Science konzentriert sich auf die mathematischen und statistischen Grundlagen der Datenanalyse sowie auf die Programmierung und Datenvisualisierung. Es ist ein breiterer Studiengang, der verschiedene Aspekte der Datenwissenschaft abdeckt. Der Bachelor of Science (B.Sc.) in Business Analytics hingegen legt den Schwerpunkt auf die Anwendung von Datenanalysetechniken und -tools in einem betriebswirtschaftlichen Kontext. Es befasst sich mit der Nutzung von Daten, um Geschäftsprozesse zu verbessern, Entscheidungen zu treffen und Geschäftsstrategien zu entwickeln. Obwohl es einige Überschneidungen gibt, liegt der Hauptunterschied zwischen den beiden Studiengängen in ihrem Fokus und ihrer Anwendung. Der B.Sc. in Data Science ist allgemeiner und kann in verschiedenen

  • Wie kann ich Data Science in meinem Unternehmen einsetzen?

    Um Data Science in Ihrem Unternehmen einzusetzen, sollten Sie zunächst klare Ziele definieren, die Sie mit Hilfe von Datenanalyse erreichen möchten. Identifizieren Sie dann die relevanten Datenquellen und sammeln Sie die benötigten Daten. Anschließend können Sie Data Science-Techniken wie maschinelles Lernen und statistische Analysen anwenden, um Muster und Erkenntnisse aus den Daten zu gewinnen und fundierte Entscheidungen zu treffen. Stellen Sie sicher, dass Sie über die richtigen Ressourcen und Fähigkeiten verfügen, um Data Science erfolgreich in Ihrem Unternehmen einzusetzen.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.